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a b s t r a c t

This paper applies the Adomian decomposition method (ADM) to the search for the
approximate solutions to the problem of the nonlinear vibrations of multiwalled carbon
nanotubes embedded in an elastic medium. A multiple-beam model is utilized in which
the governing equations of each layer are coupled with those of its adjacent ones via the
van der Waals inter layer forces. The amplitude–frequency curves for large-amplitude
vibrations of single-walled, double-walled and triple-walled carbon nanotubes are
obtained. The influence of changes in material constants of the surrounding elastic medium
and the effect of changes in nanotube geometrical parameters on the vibration character-
istics are studied by comparing the results with those from the open literature. This
method needs less work in comparison with the traditional methods and decreases consid-
erable volume of calculation, and it’s powerful mathematical tool for solving wide class of
nonlinear differential equations. Special attention is given to prove the convergence of the
method. Some examples are given to illustrate the determination approximate solutions of
the proposed problem.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

In the past few years much attention devoted to simulate real-life problems which can be described by nonlinear differ-
ential equations using reliable and more efficient methods. The ADM (see [1–4,6,7,9–11] and the references cited therein) is
one of these methods which has received much concern, it has the merits of simplicity and easy execution. Unlike the tra-
ditional numerical methods, ADM does not need small parameter, discretization, linearization, transformations or perturba-
tion. The solution procedure by ADM is very simple, and only few terms lead to high accuracy solutions which are valid for
the solution domain. The nonlinear coupled systems of partial differential equations often appear in the study of circled fuel
reactor, high-temperature hydrodynamics and thermo-elasticity problems, see [12–15]. From the analytical point of view, a
lot of work has been done for such systems.

With the rapid development of nanotechnology, there appears an ever-increasing interest of scientists and researchers in
this field of science. Nanomaterials, because of their exceptional mechanical, physical and chemical properties have been the
main topic of research in many scientific publications. Nowadays, they are used as the substantial parts of nanoelectronics,
nanodevices, and nanocomposites. One of these materials attracted great attention due to its high mechanical strength is
carbon nanotube (CNT). CNTs were discovered by Iijima [8] in 1991. In spite of being too small and having light weight, they
have very large Young’s modulus in axial direction (nearly 1TPa). Undoubtedly, CNTs have the eligibility to be the new and
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most popular nanomaterial of this early part of the 21st century. Since the vibration of CNTs are of considerable importance
in a number of nanomechanical devices such as oscillators, charge detectors, field emission devices and sensors, Many re-
searches have been so far devoted to the problem of the vibration of these Nanomaterials ([17–19]). However, most of
the investigations conducted on the vibration of multiwalled carbon nanotubes (MWNTs) have been restricted to the linear
regime and fewer works were done on the nonlinear vibration of these materials. Recently Fu [5] studied the nonlinear vibra-
tions of embedded nanotubes using the incremental harmonic balanced method (IHBM). In that work, single-walled nano-
tubes (SWNTs) and double-walled nanotubes (DWNTs) considered for the study. The goal of this paper is to use the merits of
simplicity of ADM to search the approximate solutions for triple-walled nanotubes (TWNTs).

The paper is organized as follows: In Section 2 we introduce the fundamentals of Adomian decomposition method. In Sec-
tion 3 we implement ADM to obtain the approximate solutions of multiwalled carbon nanotubes, and the convergence of the
ADM is presented. The last section gives a discussion of our results.

2. Fundamentals of Adomian decomposition method

In this section, a brief outline of ADM is explained. For this, we consider a general nonlinear differential equation in the
following form:

Luþ Ruþ NðuÞ ¼ g; ð1Þ

where L is the highest order derivative which is assumed to be easily invertible, R linear differential operator of less order
than L, N(u) presents the nonlinear term and g is the source term. Applying the inverse operator L�1 to the both sides of (1)
and using the given conditions we obtain:

u ¼ uðxÞ þ L�1½g� � L�1½Ruþ NðuÞ�; ð2Þ

where the function u(x) presents the solution of the homogenous differential equation Lu = 0, using the given conditions. The
ADM defines the solution u by the series in the following form:

uðxÞ ¼
X1
n¼0

unðxÞ ð3Þ

and the nonlinear operator N(u) presents by an infinite series of the so-called Adomian’s polynomials:

NðuÞ ¼
X1
n¼0

An; ð4Þ

where un(x), n P 0 are the components of u(x) that will be elegantly determined and An are called Adomian’s polynomials
and defined by:

An ¼
1
n!

dn

dkn N
X1
i¼0

kiui

 !" #
k¼0

; n P 0: ð5Þ

From the above considerations, the decomposition method defines the components un(x) for n P 0, by the following
recursive relationships:

u0ðxÞ ¼ uðxÞ þ L�1½g�; unþ1ðxÞ ¼ �L�1½Run þ An�; n P 0: ð6Þ

This will enable us to determine the components un recurrently. However, in many cases the exact solution in a closed
form may be obtained. For numerical comparisons purpose, we construct the solution u(x) such that:

lim
n!1

UnðxÞ ¼ uðxÞ; where UnðxÞ ¼
Xn�1

i¼0

uiðxÞ; n P 0: ð7Þ

For more details about ADM and its convergence see [11,14,16].

3. Solution procedure using ADM

In this section, we apply ADM to obtain the approximate solution to the problem of the nonlinear vibrations of CNTs.
Case 1: Nonlinear vibration of a SWNT.
Consider a SWNT of length l, Young’s modulus E, density q, cross-sectional area A, and cross-sectional inertia moment I,

embedded in an elastic medium with material constant k. The nonlinear vibration equation for this CNT is in the following
form [5]:

d2W

dt2 þ
p4EI

qAl4 þ
k
qA

 !
W þ p4E

4ql4
W3 ¼ 0; ð8Þ
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under the transformations: r ¼
ffiffi
I
A

q
x ¼ W

r ; wl ¼ p2

l2

ffiffiffiffi
EI
qA

q
; wk ¼

ffiffiffiffi
k
qA

q
s ¼ xt; the above equation can be transformed to the fol-

lowing dimensionless nonlinear vibration equation:

x2 d2x
ds2 þw2

bxþ aw2
l x3 ¼ 0; ð9Þ

in which a = 0.25 and wb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

l þw2
k

q
, is the linear, free vibration frequency. With the initial conditions:

xð0Þ ¼ X; _xð0Þ ¼ 0: ð10Þ

First, we rewrite (9) in an operator form as follows:

LðxÞ þ NðxÞ ¼ 0; ð11Þ

where the notations; L ¼ d2

dt2 symbolize the linear differential operator, N is nonlinear operator and defined by:

NðxÞ ¼ w2
bxþ aw2

l x3: ð12Þ

By using the inverse operator, we can write (11) in the following form:

xðtÞ ¼ xð0Þ � L�1½NðxÞ�; ð13Þ

where the inverse operator is defined by: L�1ð:Þ ¼
R t

0

R t
0ð:Þdt dt.

The ADM suggests that the solution can be decomposed by an infinite series of components:

xðtÞ ¼
X1
n¼0

xnðtÞ ð14Þ

and the nonlinear term (12) decomposed by the infinite series (4), where xn(t), n P 0 are the components of that will be ele-
gantly determined and An, n P 0 are called Adomian’s polynomials defined by (5).

Now, by using the above considerations, the decomposition method defines the components xn(t), n P 0 by the following
recursive relationships:

x0ðtÞ ¼ xð0Þ; xnþ1ðtÞ ¼ �L�1½An�; n P 0: ð15Þ

This will enable us to determine the components recurrently. However, in many cases the exact solution in a closed form
may be obtained. For numerical comparison purpose, we construct the solution x(t) such that:

lim
n!1

HnðtÞ ¼ xðtÞ; where HnðtÞ ’
Xn�1

i¼0

xiðtÞ; n P 0: ð16Þ

In order to seek the periodic solution of Eq. (9) assume the initial approximation to be the linear solution of Eq. (9) as:

x0ðtÞ ¼ X cosðwwbtÞ: ð17Þ

This initial approximation is a trial function and it is used to obtain more accurate approximate solution of Eq. (9). Here w,
is the ratio of the nonlinear frequency, x, to the linear frequency, wb. Substituting the initial approximation into Eq. (9) re-
sults in the following residual:

R0ðnÞ ¼ ð�Xw2w2
b þw2

bX þ 0:75aw2
l X3Þ cosðwwbnÞ þ 0:25aw2

l X3 cosð3wwbnÞ: ð18Þ

In order to ensure that no secular terms appear in the next iteration, the coefficient of cos(wwbn) must vanish. Therefore:

w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

4
a

wl

wb

� �2

X2

s
: ð19Þ

To find the first component of the solution of (9) using ADM, we calculate the first Adomian’s polynomial using Eq. (5) as
follows:

A0 ¼ w2
bx0 þ aw2

l x3
0;

then, by using the given initial condition (10), we can derive the first component of the solution in the following form:

x1ðtÞ ¼
�X

ðwbwÞ2
w2

b þ 0:195X2w2
l � ðw2

b þ 0:1875X2w2
l Þ cosðwwbtÞ � 0:00695X2w2

l cosð3wwbtÞ
h i

;

with w defined as in Eq. (19). The amplitude–frequency response curves for a SWNT for different spring k constants are
shown in Fig. 1. The material and geometric parameters taken here are E = 1.1TPa, q = 1300 kg/m3, l = 45 nm, the outer diam-
eter d1 = 3 nm and the inner diameter d0 = 2.32 nm. In Fig. 1, w is the ratio of nonlinear frequency to linear frequency as dis-
cussed earlier and X is the maximum vibration amplitude. It can be seen that as the spring constant k increases, the nonlinear
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frequencies tend to approach the linear ones especially when exceeds the value 107 n/m2. It should be noted that Fig. 1 is
exactly the same as the figure obtained via incremental harmonic balance method (IHBM) [5].

3.1. Convergence analysis of ADM

In this section, we study the convergence analysis of ADM to the solution when applied to the model problem (8). Let us
define the Hilbert space H = L2(a,b) as a set of all applications:

W : ða;bÞ ! R with
Z
ða;bÞ
jWj2ðsÞds <1:

Let us consider LðWÞ ¼ d2W
dt2 ; then we can rewrite (8) in the following operator form:

d2W

dt2 ¼ �k1W � k2W3; ð20Þ

where k1 ¼ p4EI
q Al4
þ k

q A ; k2 ¼ p4E
4q l4

.

Theorem 1. The ADM applied to the nonlinear (8) converges towards a particular solution if the following two hypotheses are
satisfied:

ðH1Þ : ðLðWÞ � LðUÞ;W � UÞP mkW � Uk2
; m > 0; 8W ;U 2 H;

ðH2Þ : there existCðKÞ > 0;K > 0; such that 8W;U 2 H with kWk 6 K; kUk 6 K;

we have (L(W) � L(U), P) 6 C(K)kW � UkkPk "P 2 H.

Proof. To verify (H1) for the operator L(W), we have:

LðWÞ � LðUÞ ¼ �k1ðW � UÞ � k2ðW3 � U3Þ:

Then we claim:

ðLðWÞ � LðUÞ;W � UÞ ¼ �k1ðW � U;W � UÞ � k2ðW3 � U3;W � UÞ: ð21Þ

Now, we have:

ðW � U;W � UÞ 6 kW � UkkW � Uk ¼ kW � Uk2
; ð22Þ

where W < g < U and kWk < K,kUk < K. Therefore:

ðW3 � U3;W � UÞ 6 kW3 � U3kkW � Uk ¼ 3g2kW � Uk2 ¼ 3K2kW � Uk2
; ð23Þ

substituting from (22) and (23) into (21), we get:

Fig. 1. Effect of spring constant k on nonlinear amplitude–frequency response curves of SWNT.
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ðLðWÞ � LðUÞ;W � UÞP ðk1 þ 3k2K2ÞkW � Uk2 ¼ mkW � Uk2
;

where m ¼ k1 þ 3k2K2 ¼ p4EI
qAl4
þ k

qAþ 3 p4E
4ql4

K2. Hence, we verified (H1). To verify (H2) for the operator L(W), we have:

ðLðWÞ � LðUÞ; PÞ ¼ �k1ðW � U; PÞ � k2ðW3 � U3; PÞ; ð24Þ

therefore,

ðLðWÞ � LðUÞ; PÞ 6 ðk1 þ 3k2K2ÞkW � UkkPk ¼ CðKÞkW � UkkPk;

where C(K) = k1 + 3k2K2. Hence, we verified (H2) and the end of the proof. h

Case 2: Nonlinear vibration of a DWNT.
The nonlinear vibration governing equation for a DWNT is in the following form [5]:

d2W1

dt2 þ
p4EI1

qA1l4
þ c1

qA1

 !
W1 þ

p4E

4ql4 W3
1 �

c1

qA1
W2 ¼ 0; ð25Þ

d2W2

dt2 þ
p4EI2

qA2l4
þ c1

qA2
þ k

qA2

 !
W2 þ

p4E

4ql4
W3

2 �
c1

qA2
W1 ¼ 0; ð26Þ

where c1 is the coefficient of the van der Waals force between the i-th tube and the i-1th tube. By substituting the following
dimensionless parameters:

r ¼

ffiffiffiffiffiffi
I1

A1

s
; x ¼W1

r
; y ¼W2

r
; xl ¼

p2

l2

ffiffiffiffiffiffiffiffiffi
EI1

qA1

s
; xk ¼

ffiffiffiffiffiffiffiffiffi
k

qA1

s
; xc ¼

ffiffiffiffiffiffiffiffiffi
c

qA1

r
; s ¼ wt;b ¼ A1

A2
; c ¼ I1

I2
; a ¼ 0:25:

Eqs. (25) and (26) can be transformed to the following dimensionless nonlinear system:

x
xl

� �2 d2x
ds2 þ B1xþ ax3 � B2y ¼ 0; ð27Þ

x
xl

� �2 d2y
ds2 þ B3yþ ay3 � B4x ¼ 0; ð28Þ

with B1 to B4 defined as:

B1 ¼ 1þ xc

xl

� �2

; B2 ¼
xc

xl

� �2

; B3 ¼ b
1
c
þ xc

xl

� �2

þ xk

xl

� �2
 !

; B4 ¼ b
xc

xl

� �2

:

With the initial conditions:

xð0Þ ¼ X1; yð0Þ ¼ X2; _xð0Þ ¼ _yð0Þ ¼ 0: ð29Þ

First, we write (27) and (28) in an operator form as follows:

LðxÞ þ Nðx; yÞ ¼ 0; ð30Þ
LðyÞ þMðx; yÞ ¼ 0; ð31Þ

where the nonlinear operators are defined by:

Nðx; yÞ ¼ x2
l B1xþ ax2

l x3 �x2
l B2y; Mðx; yÞ ¼ x2

l B3yþ ax2
l y3 �x2

l B4x: ð32Þ

By using the inverse operator, we can write (30) and (31) in the following form:

xðtÞ ¼ xð0Þ � L�1½Nðx; yÞ�; yðtÞ ¼ yð0Þ � L�1½Mðx; yÞ�: ð33Þ

The ADM suggests that the solutions x(t) and y(t) can be decomposed by an infinite series of components:

xðtÞ ¼
X1
n¼0

xnðtÞ; yðtÞ ¼
X1
n¼0

ynðtÞ ð34Þ

and the nonlinear terms which defined in (32) decomposed by the infinite series:

Nðx; yÞ ¼
X1
n¼0

An; Mðx; yÞ ¼
X1
n¼0

Bn; ð35Þ

where xn(t) and yn(t), n P 0 are the components of x(t) and y(t) respectively, that will be elegantly determined and An, Bn,
n P 0 are called Adomian’s polynomials and defined by (5).

Now, by using the above considerations, the decomposition method defines the components xn(t) and yn(t), n P 0 by the
following recursive relationships:
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x0ðtÞ ¼ xð0Þ; xnþ1ðtÞ ¼ �L�1½An�; n P 0; ð36Þ
y0ðtÞ ¼ yð0Þ; ynþ1ðtÞ ¼ �L�1½Bn�; n P 0: ð37Þ

This will enable us to determine the components xn(t) and yn(t) recurrently. However, in many cases the exact solution in
a closed form may be obtained. For numerical comparison purpose, we construct the solutions x(t) and y(t) such that:

lim
n!1

HnðtÞ ¼ xðtÞ; and lim
n!1

WnðtÞ ¼ yðtÞ; ð38Þ

where HnðtÞ ¼
Pn�1

i¼0 xiðtÞ; and WnðtÞ ¼
Pn�1

i¼0 yiðtÞ; n P 0.
In order to seek the periodic solutions of Eqs. (27) and (28) assume the initial approximations to be the linear solution of

Eqs. (27) and (28) as:

x0ðtÞ ¼ X1 cosðwwbtÞ; y0ðtÞ ¼ X2 cosðwwbtÞ: ð39Þ

These initial approximations are trial functions and it used to obtain more accurate approximate solutions of Eqs. (27) and
(28). Substituting the initial approximations into Eqs. (27) and (28) result in the following residuals:

R10ðnÞ ¼ ð�X1w
2w2

b þw2
l B1X1 þ 0:75aw2

l X3
1 � B2w2

l X2Þ cosðwwbnÞ þ 0:25aw2
l X3

1 cosð3wwbnÞ;
R20ðnÞ ¼ ð�X2w

2w2
b þw2

l B3X2 þ 0:75aw2
l X3

2 � B4w2
l X1Þ cosðwwbnÞ þ 0:25aw2

l X3
2 cosð3wwbnÞ:

Here in w, the ratio of the nonlinear frequency x to the linear frequency xb, is the unknown constant. Following the same
approach as above and also eliminating the coefficient of cos(wwb t) in the above system due to avoiding the secular terms,
results in the following nonlinear system which can be easily solved using a simple mathematical algorithm such as
Newton–Raphson technique.

� w
xl

� �2

X1w2
b þ B1X1 þ

3
4
aX3

1 � B2X2 ¼ 0; ð40Þ

� w
xl

� �2

X2w2
b þ B3X2 þ

3
4
aX3

2 � B4X1 ¼ 0: ð41Þ

To calculate the linear vibration frequencies for DWNT, we shall first substitute x = X1cos(wwb t) and y = X2cos(wwb t) into
Eqs. (27) and (28) without considering the nonlinear terms in Eqs. (27) and (28), so that:

x2
l þx2

c �x2 �x2
c

�bx2
c b

x2
l

c þx2
c þx2

k

� �
�x2

0
@

1
A X1

X2

� �
¼

0
0

� �
: ð42Þ

Then by setting the determinant of the matrix in Eq. (42) equal to zero, the frequency characteristic equation will be ob-
tained. The fundamental linear vibration frequency of DWNT is the lowest root of the resulting equation. Fig. 2 shows the
variation of the nonlinear amplitude–frequency response curves of DWNT against the maximum vibration amplitude for dif-
ferent spring constants k. The material and geometric parameters used to obtain this figure are, E = 1.1 TPa, q = 1300 kg/m3,

Fig. 2. Effect of spring constant k on nonlinear amplitude–frequency response curves of DWNT.
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c = 0.3 � 1012 N/m2, l = 45 nm, d0 = 1.64 nm, d1 = 2.32 nm and d2 = 3 nm. It can be seen that the effect of spring constant on
nonlinear vibration of DWNT is similar to that emerged in the case of SWNT (Fig. 1) and this figure is exactly the same figure
as that obtained via (IHBM) [5].

To find the first component of the solutions of Eqs. (27) and (28) using ADM, we calculate the first Adomian’s polynomials
A0 and B0 using Eq. (5) as follows:

A0 ¼ w2
l B1x0 þ aw2

l x3
0 �w2

l B2y0; B0 ¼ w2
l B3y0 þ aw2

l y3
0 �w2

l B4x0;

then, by using the given initial condition (29), we can derive the first component of the solution in the following form:

x1ðtÞ ¼ �
xl

wbw

� �2

0:195X3
1 þ B1X1 � B2X2 þ �0:1874X3

1 � B1X1 � B2X2

� �
cosðwwbtÞ � 0:00695X3

1 cosð3wwbtÞ
h i

;

y1ðtÞ ¼ �
xl

wbw

� �2

0:195X3
2 þ B3X2 � B4X1 þ �0:1874X3

2 � B3X2 � B4X1

� �
cosðwwbtÞ � 0:00695X3

2 cosð3wwbtÞ
h i

:

Case 3: Nonlinear vibration of a TWNT.
The nonlinear vibration governing equations for TWNTs are in the following form:

d2W1

dt2 þ
p4EI1

qA1l4
þ c1

qA1

 !
W1 þ

p4E

4ql4 W3
1 �

c1

qA1
W2 ¼ 0; ð43Þ

d2W2

dt2 þ
p4EI2

qA2l4
þ c1

qA2
þ c2

qA2

 !
W2 þ

p4E

4ql4
W3

2 �
c1

qA2
W1 �

c2

qA2
W3 ¼ 0; ð44Þ

d2W3

dt2 þ
p4EI3

qA3l4
þ c1

qA3
þ c2

qA3
þ k

qA3

 !
W3 þ

p4E

4ql4 W3
3 �

c2

qA3
W2 ¼ 0: ð45Þ

In a similar manner, introducing the following dimensionless parameters:

r ¼

ffiffiffiffiffiffi
I1

A1

s
; x ¼W1

r
; y ¼W2

r
; z ¼W3

r
; xl ¼

p2

l2

ffiffiffiffiffiffiffiffiffi
EI1

qA1

s
; xk ¼

ffiffiffiffiffiffiffiffiffi
k

qA1

s
; xc ¼

ffiffiffiffiffiffiffiffiffi
c

qA1

r
; s ¼ wt;b ¼ A1

A2
; c ¼ I1

I2
; g ¼ A1

A3
;

f ¼ I1

I3
; a ¼ 0:25;

to the Eqs. (43)–(45) leads to the dimensionless nonlinear vibration equations as:

x2 d2x
ds2 þx2

l B1xþ ax2
l x3 �x2

l B2y ¼ 0; ð46Þ

x2 d2y
ds2 þx2

l B3yþ ax2
l y3 �x2

l bB2x�x2
l bB2z ¼ 0; ð47Þ

x2 d2z
ds2 þx2

l B4zþ ax2
l z3 �x2

l gB2y ¼ 0; ð48Þ

with B1 to B4 defined as:

B1 ¼ 1þ xc

xl

� �2

; B2 ¼
xc

xl

� �2

; B3 ¼ b
1
c
þ 2

xc

xl

� �2
 !

; B4 ¼ g
1
f
þ 2

xc

xl

� �2

þ xk

xl

� �2
 !

:

With the initial conditions:

xð0Þ ¼ X1; yð0Þ ¼ X2; zð0Þ ¼ X3; _xð0Þ ¼ _yð0Þ ¼ _zð0Þ ¼ 0: ð49Þ

First, we write (46)–(48) in an operator form as follows:

LðxÞ þ Nðx; y; zÞ ¼ 0; LðyÞ þMðx; y; zÞ ¼ 0; LðzÞ þ Vðx; y; zÞ ¼ 0: ð50Þ

where the nonlinear operators are defined by:

Nðx; y; zÞ ¼ x2
l B1xþ ax2

l x3 �x2
l B2y;

Mðx; y; zÞ ¼ x2
l B3yþ ax2

l y3 �x2
l B2bx�x2

l bB2z; ð51Þ
Vðx; y; zÞ ¼ x2

l B4zþ ax2
l z3 �x2

l gB2y:

By using the inverse operator, we can write (50) in the following form:

xðtÞ ¼ xð0Þ � L�1½Nðx; y; zÞ�; yðtÞ ¼ yð0Þ � L�1½Mðx; y; zÞ�; zðtÞ ¼ zð0Þ � L�1½Vðx; y; zÞ�: ð52Þ

The ADM suggests that the solutions can be decomposed by an infinite series of components:
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xðtÞ ¼
X1
n¼0

xnðtÞ; yðtÞ ¼
X1
n¼0

ynðtÞ; zðtÞ ¼
X1
n¼0

znðtÞ ð53Þ

and the nonlinear terms which defined in (51) decomposed by the infinite series:

Nðx; y; zÞ ¼
X1
n¼0

An; Mðx; y; zÞ ¼
X1
n¼0

Bn; Vðx; y; zÞ ¼
X1
n¼0

Cn; ð54Þ

where xn(t), yn(t) and zn(t), n P 0 are the components of x(t), y(t) and z(t) respectively, that will be elegantly determined and
An, Bn, Cn, n P 0 are called Adomian’s polynomials and defined by (5). Now, by using the above considerations, the decom-
position method defines the components xn(t), yn(t), and zn(t), n P 0 by the following recursive relationships:

x0ðtÞ ¼ xð0Þ; xnþ1ðtÞ ¼ �L�1½An�; n P 0; ð55Þ
y0ðtÞ ¼ yð0Þ; ynþ1ðtÞ ¼ �L�1½Bn�; n P 0; ð56Þ
z0ðtÞ ¼ zð0Þ; znþ1ðtÞ ¼ �L�1½Cn�; n P 0: ð57Þ

This will enable us to determine the components xn(t), yn(t) and zn(t) recurrently. However, in many cases the exact solu-
tion in a closed form may be obtained. For numerical comparisons purpose, we construct the solutions x(t) and y(t) such that:

lim
n!1

HnðtÞ ¼ xðtÞ; lim
n!1

WnðtÞ ¼ yðtÞ and lim
n!1

XnðtÞ ¼ zðtÞ; ð58Þ

where HnðtÞ ¼
Pn�1

i¼0 xiðtÞ; WnðtÞ ¼
Pn�1

i¼0 yiðtÞ; and XnðtÞ ¼
Pn�1

i¼0 ziðtÞ;n P 0.
In order to seek the periodic solutions of Eqs. (46)–(48) assume the initial approximations to be the linear solution of Eqs.

(46)–(48) as:

x0ðtÞ ¼ X1 cosðwwbtÞ; y0ðtÞ ¼ X2 cosðwwbtÞ; z0ðtÞ ¼ X3 cosðwwbtÞ: ð59Þ

These initial approximations are trial functions and it used to obtain more accurate approximate solutions of Eqs. (46)–
(48). Substituting the initial approximations into Eqs. (46)–(48) result in the following residuals:

R10ðnÞ ¼ �X1w
2w2

b þw2
l B1X1 þ 0:75aw2

l X3
1 � B2w2

l X2

� �
cosðwwbnÞ þ 0:25aw2

l X3
1 cosð3wwbnÞ;

R20ðnÞ ¼ �X2w
2w2

b þ ðB3X2 þ 0:75aX3
2 � B2bX1 � B2bX3Þ

� �
w2

l cosðwwbnÞ þ 0:25aw2
l X3

2 cosð3wwbnÞ;

R30ðnÞ ¼ �X3w
2w2

b þ ðB4X3 þ 0:75aX3
3 � B2gX2Þ

� �
w2

l cosðwwbnÞ þ 0:25aw2
l X3

3 cosð3wwbnÞ:

Here in w, the ratio of the nonlinear frequency x to the linear frequency xb, is the unknown constant. Following the same
approach as above and also eliminating the coefficient of cos(wwb t) in the above system due to avoiding the secular terms,
results in the following nonlinear system which can be easily solved using a simple mathematical algorithm such as
Newton–Raphson technique.

Fig. 3. Effect of spring constant k on nonlinear amplitude–frequency response curves of TWNT.
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� w
xl

� �2

X1w2
b þ B1X1 þ

3
4
aX3

1 � B2X2 ¼ 0; ð60Þ

� w
xl

� �2

X2w2
b þ B3X2 þ

3
4
aX3

2 � B2bX1 � B2bX3 ¼ 0; ð61Þ

� w
xl

� �2

X3w2
b þ B4X3 þ

3
4
aX3

3 � B2gX2 ¼ 0: ð62Þ

To calculate the linear vibration frequencies for TWNT, we shall first substitute x = X1cos(wxbt), y = X2cos(wxbt), and
z = X3cos(wxbt), into Eqs. (46)–(48) without considering the nonlinear terms in Eqs. (46)–(48), so that:

Fig. 4. The nonlinear amplitude of the vibration of the first layer of TWNT.

Fig. 5. Effect of aspect ratio L/d2 on nonlinear amplitude–frequency response curves for TWNT.
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x2
l þx2

c �x2 �x2
c 0

�bx2
c b

x2
l

c þ 2x2
c

� �
�x2 �bx2

c

0 �gx2
c g x2

l
f þx2

c þx2
k

� �
�x2

0
BBB@

1
CCCA

X1

X2

X3

0
B@

1
CA ¼

0
0
0

0
B@

1
CA: ð63Þ

For a nontrivial solution to exist, the determinant of the above matrix must be vanished which leads to the frequency
characteristic equation to be solved. The fundamental linear vibration frequency of TWNT is the lowest root of the resulting
equation. The variation of the nonlinear amplitude–frequency response curves of TWNT against the maximum vibration
amplitude for different spring constants is also illustrated in Fig. 3. The material and geometric parameters used are
c1 = c2 = 0.3 � 1012 N/m2, l = 45 nm, d0 = 0.96 nm, d1 = 1.64 nm, d2 = 2.32 nm and d3 = 3 nm. Clearly the same behavior as
above is indefeasible in the case of TWNT. A comparison between the amplitude of the nonlinear vibration of the first layer
of TWNT with its linear vibration amplitude is shown in Fig. 4 for X1 = 3 and k = 0 against the linear period of vibration
(s = xbt). Its worthwhile to say that the discrepancy between the linear and nonlinear amplitudes increases with the incre-
ment of the maximum amplitude. In Fig. 5, the parameters are k = 107 N/m2, c = 0.3 � 1012 N/m23 and d2 = 3 nm. It is ob-
served that with the increase of the aspect ratio of the nanotubes, the nonlinear vibration frequencies of MWNTs
decrease. Due to convenience in calculating the nonlinear free vibration frequency x, the linear vibration frequencies xb

of SWNT, DWNT and TWNT for all cases are listed in Table 1.
To find the first component of the solution of Eqs. (46)–(48) using ADM, we calculate the first Adomian’s polynomials A0,

B0 and C0 using Eq. (5) as follows:

A0 ¼ w2
l B1x0 þ aw2

l x3
0 �w2

l B2y0;

B0 ¼ w2
l B3y0 þ aw2

l y3
0 �w2

l B2bx0 �w2
l bz0;

C0 ¼ w2
l B4z0 þ aw2

l z3
0 �w2

l B2gy0:

Then, by using the given initial conditions, we can derive the first components of the solutions in the following form:

x1ðtÞ ¼ �
xl

wbw

� �2

0:195X3
1 þ B1X1 � B2X2 þ ð�0:1874X3

1 � B1X1 � B2X2Þ cosðwwbtÞ � 0:00695X3
1 cosð3wwbtÞ

h i
;

y1ðtÞ ¼ �
xl

wbw

� �2

�ðB3X2 þ 0:1875X3
2 � B2ðX1 þ X3Þð�1þ cosðwwbtÞÞ þ 0:00695X3

2ð1� cosð3wwbtÞÞ
h i

;

z1ðtÞ ¼ �
xl

wbw

� �2

0:195X3
32 þ B4X3 � B2gX2 þ �0:1874X3

3 � B4X3 þ B2gX2

� �
cosðwwbtÞ � 0:00695X3

3 cosð3wwbtÞ
h i

:

4. Concluding remarks

In this paper, we implement ADM to solve the problem of the nonlinear vibrations of multiwalled carbon nanotubes. The
advantage of the method is that it does not need a small parameter in the system, leading to wide application in nonlinear
problems. Also, the convergence analysis of the proposed method is introduced. The numerical solutions have been com-
pared with the results obtained via IHBM and excellent correlation has been obtained. The results clarify the significance
dependency of the nonlinear free vibration of nanotubes to the surrounding elastic medium. The nonlinear vibration fre-
quency of nanotubes rises rapidly with increasing the amplitude especially when the stiffness of the medium is relatively
small. For larger stiffness (say k > 109 N/m2), the nonlinear vibration tends to the linear regime. This method can be easily
extended to the multiwalled CNTs with number of walls more than three. It is worthwhile to mention that ADM is straight-
forward and it is a promising and powerful technique for solving many nonlinear equations arising in mathematical physics.
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